Post-Combustion Capture of Carbon Dioxide by Natural and Synthetic Organic Polymers

نویسندگان

چکیده

The elevation of carbon dioxide (CO2) levels in the atmosphere is responsible for global warming which turn causes abrupt climate change and consequently poses a threat to living organisms coming years. To reduce CO2 content capture separation highly necessary. Among various methods post-combustion very much useful because its operational simplicity applicability many industries power sectors, such as coal-fired plants. Polymers with high surface area, volume narrow pores are ideal solid sorbents adsorption-driven capture. Natural polymers, polysaccharides cheap, abundant, can be modified by produce porous materials thus effectively utilized while area pore size synthetic organic polymers tuned precisely capturing capacity. A significant amount research activities has already been established this field, especially last ten years still progress. In review, we have introduced latest developments readers about techniques, post-synthetic modifications capacities biopolymer-based (POPs) published five (2018–2022). This review will beneficial researchers design smart polymer-based overcome existing challenges storage/sequestration.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The clathrate hydrate process for post and pre-combustion capture of carbon dioxide.

One of the new approaches for capturing carbon dioxide from treated flue gases (post-combustion capture) is based on gas hydrate crystallization. The basis for the separation or capture of the CO(2) is the fact that the carbon dioxide content of gas hydrate crystals is different than that of the flue gas. When a gas mixture of CO(2) and H(2) forms gas hydrates the CO(2) prefers to partition in ...

متن کامل

Carbon dioxide capture in metal-organic frameworks.

Efforts to utilize metal-organic frameworks, a new class of materials exhibiting high surface areas, tunable pore dimensions, and adjustable surface functionality, for CO2 capture will be presented. Open metal coordination sites on the framework surface can deliver a high CO2 loading capacity at low pressures. However, additional criteria such as water stability and the selective binding of CO2...

متن کامل

Carbon Dioxide Capture by Modified UVM-7 Adsorbent

In this study, bimodal meso-porous silica (UVM-7) synthesized and fabricated amino silane modified supports were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscope (TEM), elemental analysis and titration. Capacity of CO2 capture on modified bimodal pore structure silica at 70°C was calculated using breakthrough curves; and it was found th...

متن کامل

Carbon Dioxide Post-Combustion Capture: Solvent Technologies Overview, Status and Future Directions

One of the most promising approaches to tackle the high emission rate of carbon dioxide is the use of Carbon Capture and Storage (CCS) technology. This technology aims at capturing carbon dioxide from power stations and other industrial facilities, compressing, and then transporting it to underground storage locations. Three technological routes for carbon capture from power plants exist: pre-c...

متن کامل

Holey graphene frameworks for highly selective post-combustion carbon capture

Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Polysaccharides

سال: 2023

ISSN: ['2673-4176']

DOI: https://doi.org/10.3390/polysaccharides4020012